ROBUST FAULT DETECTION VIA GMDH NEURAL NETWORKS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection

This paper presents an identification method of dynamic systems based on a group method of data handling approach. In particular, a new structure of the dynamic multi-input multi-output neuron in a state-space representation is proposed. Moreover, a new training algorithm of the neural network based on the unscented Kalman filter is presented. The final part of the work contains an illustrative...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Confidence estimation of GMDH neural networks and its application in fault detection systems

This article deals with the problem of determination of the model uncertainty during the system identification via application of the self-organising group method of data handling (GMDH) neural network. In particular, the contribution of the neural network structure errors and the parameter estimates inaccuracy to the model uncertainty were presented. Knowing these sources and applying the Oute...

متن کامل

A Gmdh Neural Network Based Approach to Passive Robust Fault Detection Using a Constraints Satisfaction Backward Test

This paper focus on the problem of passive robust fault detection using nonlinear models that include parameter uncertainty. The non-linear model considered here is described by a Group Method of Data Handling Neural Network (GMDHNN). The problem of passive robust fault detection using models including parameter uncertainty has been mainly addressed checking if the measured behaviour is inside ...

متن کامل

A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test

This paper proposes a new passive robust fault detection scheme using non-linear models that include parameter uncertainty. The nonlinear model considered here is described by a group method of data handling (GMDH) neural network. The problem of passive robust fault detection using models including parameter uncertainty has been mainly addressed by checking if the measured behaviour is inside t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2005

ISSN: 1474-6670

DOI: 10.3182/20050703-6-cz-1902.01816